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SUMMARY

Two Cartesian grid stretching functions are investigated for solving the unsteady incompressible
Navier–Stokes equations using the pressure–velocity formulation. The first function is developed for the
Fourier method and is a generalization of earlier work. This function concentrates more points at the
centre of the computational box while allowing the box to remain finite. The second stretching function
is for the second-order central finite difference scheme, which uses a staggered grid in the computational
domain. This function is derived to allow a direct discretization of the Laplacian operator in the pressure
equation while preserving the consistent behaviour exhibited by the uniform grid scheme. Both functions
are analysed for their effects on the matrix of the discretized pressure equation. It is shown that while the
second function does not spoil the matrix diagonal dominance, the first one can. Limits to stretching of
the first method are derived for the cases of mappings in one and two directions. A limit is also derived
for the second function in order to prevent a strong distortion of a sine wave. The performances of the
two types of stretching are examined in simulations of periodic co-flowing jets and a time developing
boundary layer. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This study presents two stretching functions of Cartesian grids for solving the unsteady
incompressible Navier–Stokes (N–S) equations using the projection method. The incompress-
ibility constraint separates the hydrodynamic field from the acoustic field and thus removes a
severe restriction on the time step of the numerical advancement for low Mach number flows.
However, the incompressibility constraint also eliminates the time derivative in the continuity
equation, leaving an extra constraint that the velocity field should be divergence-free and no
obvious way for advancing the pressure field in time. The projection method solves this
problem by splitting the time marching into two levels. The first level accounts only for the
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contributions of the convection and diffusion terms. The second level uses the pressure to
project the velocity to a divergence-free space. The pressure is found by solving a Poisson
equation.

There are numerous ways to calculate the spatial derivatives appearing in the N–S
equations. In this work we consider the Fourier method and the second-order central finite
difference scheme, both of which are suitable for Cartesian grids. The Fourier method,
implemented by the fast Fourier transform (FFT) technique, has favourable properties when
periodic boundary conditions are appropriate. It provides spectral accuracy and a fast solution
of the pressure equation. However, the discrete Fourier transform is restricted to the use of an
equally spaced co-ordinate. For the most part, this has limited the application of the method
to simple flows, such as homogeneous turbulence [1].

Cain et al. [2] suggested overcoming the constraint of an equally spaced co-ordinate by using
the grid stretching technique. This technique maps an equally spaced co-ordinate in the
computational space to a non-equally spaced co-ordinate in the physical space. The spatial
derivatives are first calculated in the computational domain using an FFT and then multiplied
by the stretching ratio of the mapping to yield the derivatives in the physical space. This
should be useful for flows that require high spatial resolution only in a relatively small portion
of the stretched co-ordinate, such as shear flows. Cain et al. [2] suggested a stretching function
that maps the periodic boundaries to infinity in order to eliminate the effect of the boundaries
and demonstrated the function on fundamental convection and diffusion problems. This
function was later used by Buell [3] to derive an elaborate pseudo-spectral hybrid method,
which was used to simulate the early transition of a mixing layer. The first aim of this study
is to generalize this stretching function to a class of problem that requires the periodic
boundaries at a finite location in the physical domain. It will be shown that this can have the
benefit of retaining the diagonal dominance of the matrix of the discretized pressure equation,
which is lost if the periodic boundaries are mapped to infinity.

The second-order central finite difference scheme is widely used for non-periodic directions.
The scheme demonstrates a consistent behaviour when implemented on a uniform staggered
grid. This means no ad hoc assumptions for the boundary conditions of the pressure equation
and a velocity field that is exactly divergence free as long as the discretized pressure equation
is solved exactly up to the machine round-off errors [4]. Such a scheme was used by Kim and
Moin [5] with the convection term marched explicitly using the second-order Adams–Bashford
scheme and the diffusion term marched implicitly using the Crank–Nicholson method. Special
attention was given to the effect of the implicit marching of the diffusion term on the boundary
conditions of the intermediate velocity field. Le and Moin [6] modified this scheme by using a
third-order Runge–Kutta method for the time marching, where the diffusion term was
marched implicitly for each of the sub-steps of the Runge–Kutta method. They suggested a
procedure that solves the pressure equation only for the last sub-step of the Runge–Kutta
method and thus reduces the computation time. However, this also resulted in reducing the
numerical accuracy in time from third-order to second-order.

Non-uniform Cartesian grids were also used for the second-order central finite difference
scheme. Sandham [7] used a non-uniform grid in the transverse direction to simulate a channel
flow and then compared the results to those produced by a spectral code. Wang et al. [8] used
a stretched grid in the transverse direction to simulate the breakdown of a laminar boundary
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layer over a flat plate. However, in these studies, the operator 9 · 9 had to be discretized in the
pressure equation instead of 92, in order to keep the consistent behaviour exhibited by the
uniform grid scheme. Effectively it meant that the stretching function was differentiated
numerically along with the pressure gradient, which could lead to a reduction in the scheme
accuracy. The second aim of this study is to derive a new stretching function, so the operator
92 can be directly discretized, while the consistent behaviour of the uniform grid is retained.

The two new stretching functions are derived in Sections 3 and 4 after an explicit time
advancement scheme is discussed in Section 2. The merits of the two stretching functions are
examined in Section 5 by simulating free and wall-bounded shear flows. A summary is given
in Section 6.

2. THE TIME ADVANCEMENT SCHEME

The non-dimensional governing equations for an incompressible viscous flow are the continu-
ity equation

9 · 6̄=0 (1)

and the momentum equation

(6̄

(t
= −9 · (6̄ 6̄)+

926̄

Re
−9p (2)

6̄ is the velocity vector and p is the pressure. An additional property of a passive scalar fps

governed by

(fps

(t
= −9 · ( fps6̄)+

92fps

Re Sc
(3)

Sc=1, can also be simulated to provide an illustration tool for the flow, to compute mixing
characteristics and to provide an indicator of the numerical resolution [9].

The following scheme adapts the principle of the projection method to derive an explicit
time advancement scheme using a third-order compact Runge–Kutta method. Rewriting
Equation (2) as

(6̄

(t
= f(6̄)−9p (4)

yields the scheme

6̃̄ r,s= 6̄ r−1,1+ars f(6̄ r−1,2)Dt (5)

6̄ r,s= 6̃̄ r,s−arsDt9pr,s (6)
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where r is the sub-step index of the three-step Runge–Kutta method. There are two velocity
fields that are marched in time. These are denoted by the index s. They are identical at time
tn

6̄0,1= 6̄0,2= 6̄ �t= tn
(7)

and also at time tn+Dt

6̄ �t= tn+Dt= 6̄
3,1= 6̄3,2 (8)

The pressure pr,s is found by requiring 6̄ r,s to be divergence free, yielding, using Equation (6),
the Poisson equation

arsDt92pr,s=9 · 6̃̄ r,s (9)

A family of constants ars for the compact Runge–Kutta method is given by Wray [10], one
example being

ar1=
�1

4
,

3
20

,
3
5
�

, ar2=
�2

3
,

5
12

,
3
5
�

(10)

The time marching of the passive scalar fps follows the regular pattern of the Runge–Kutta
method.

This basic scheme was also considered by Le and Moin [6], who added an implicit time
marching for the diffusion term and approximated pr,s (r52) by p3,s of the previous step and
a ratio of ars. So Equation (9) can be solved only once per time step. Here, the implicit time
marching of the diffusion term was not implemented because it required solving additional
elliptic equations and was found unnecessary for the cases studied in Section 5 in terms of
numerical stability and accuracy. The pressure modification of Le and Moin [6] was found to
reduce the computation time and thus was implemented in some of the cases in Section 5.
However, this modification had no effect on the analysis presented in Sections 3 and 4.

3. A STRETCHING FUNCTION FOR THE FOURIER TRANSFORM

For a scheme that uses the Fourier method, it is convenient to carry out the time advancement
in Fourier space. A fast way to calculate the non-linear terms in Equations (2) and (3) is to
perform the multiplication in real space and transform the result back to Fourier space. To
avoid aliasing errors, which can be significant if the grid is not fully resolved, the multiplica-
tion should be zero-padded by an additional 50 per cent modes, see Canuto et al. [11] for
further details.

In Fourier space, the Poisson equation (9) simply becomes

− �k( �2p̂= f. (11)
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for a uniform grid, where k( is the wave vector, p̂ is the Fourier transform of pr,s and f. is of
the rest of Equation (9). The solution p̂ is unique for every k( , except for k( =0, where p̂ is
arbitrary since the pressure appears as a derivative the momentum equation (2). Accordingly,
f. of k( =0 has to be zero, which is the compatibility condition. The periodic boundary
conditions ensure that this condition is met.

A stretching function for the Fourier method has to be periodic and should avoid
introducing new interactions between the modes as much as possible. This is, to avoid aliasing
errors and additional complexity of the discretized Poisson equation. Here, a generalized form
of Cain et al.’s [2] mapping is suggested to allow the option of keeping the periodic boundaries
in a finite distance from each other and at the same time concentrate more points at the centre
of the box. The mapping is

ds
dy

=a+b sin2(ps), 05s51 (12)

where y is the co-ordinate in physical space and s is the equally spaced co-ordinate. When
a=0, Equation (12) degenerates to Cain et al.’s [2] mapping and the boundaries are mapped
to infinity. In this work we consider the case a, b\0, which avoids singularities in the
mapping.

The derivatives with respect to y can be calculated using the chain rule, yielding for the first
derivative

dp
dy

= %
(Ny /2)−1

− (Ny/2)+1

cj eikj s, cj= i(a+b/2)kjp̂j− ib(kj−1p̂j−1+kj+1p̂j+1)/4 (13)

and for the second derivative

d2p
dy2= %

(Ny /2)−1

− (Ny/2)+1

dj eikj s, dj= − %
n=2

n= −2

(−1)nkj+np̂j+ngj,n (14)

where

gj,−2=
(kj−2+2p)b2

16
, gj,−1=

(kj−1+p)(2ab+b2)
4

(15.1)

gj,0=kj(a2+ab+3b2/8) (15.2)

gj,1=
(kj+1−p)(2ab+b2)

4
, gj,2=

(kj+2−2p)b2

16
(15.3)

Ny is the number of points in the y-direction, kj=2pj and p̂j is to be taken as zero for
� j �]Ny/2. The truncation errors due to the introduction of the stretching are proportional to
p̂(Ny/2)−1 and p̂(Ny/2)−2. The convection and diffusion terms can be calculated using Equations
(13) and (14). This will be examined using a practical test case in Section 5. For the rest of this
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section, we follow Cain et al. [2] and examine the effect on the pressure solution, which has
universal characteristics and can considerably affect the execution time.

First, we assume the mapping is applied only in one direction, say the y-direction, while the
other two directions are periodic. Then, instead of solving (Nx−1)(Nz−1)Ny/2 scalar equa-
tions of (11) for the complex variable p̂, one has to solve (Nx−1)(Nz−1) equations of the set

bjm · p̂m= f. j, j, m=0, . . . , (Ny/2)−1 (16)

where b is a pentadiagonal matrix. Its non-zero coefficients in the rows j=2 to (Ny/2)−1 are

bj, j−2= −kj−2gj,−2, bj, j−1=kj−1gj,−1 (17.1)

bj, j= −kx
2 −kz

2−kjgj,0 (17.2)

bj, j+1=kj+1gj,1, bj, j+2= −kj+2gj,2 (17.3)

where any contribution from kj\2p [(Ny/2)−1] is set to zero. Any contribution from kjB0 is
to be added using the relation

p̂(−kj)=conjugate[p̂(kj)] (18)

for real data [2]. Thus, the non-zero coefficients of row j=0 are

b00= −kx
2 −kz

2, b01=k1g0,1+k−1g0,−1, b02= −k2g0,2−k−2g0,−2 (19)

and of row j=1

b10=0, b11= −kx
2 −kz

2−k1g1,0 (20.1)

b12=k2g1,1, b13= −k3g1,2 (20.2)

A sufficient condition for a matrix to be non-singular is to require it to be strictly diagonally
dominant [12], which yields for b

�bjj �\ %
m" j

�bjm �, j=0, . . . , (Ny/2)−1 (21)

When the grid is uniform, the set of the scalar equations (11) obeys Equation (21), except for
the mode k( =0, which by physical grounds should be singular. In the case of the stretched
grid, the matrix that is least diagonally dominant is the one with kx=kz=0. Imposing
Equation (21) to this mode, leads to, using Equations (17), (20) and (21)

a

b
\

1+
4j 4+8j 2+1
4j 2 , j=1, . . . , (Ny/2)−1 (22)
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as the condition for diagonal dominance. The right-hand side of Equation (22) decreases
monotonically from 1.151 for j=1 to 0.5 for j��. It shows there is a limit to the amount of
stretching that can be achieved if the loss of the diagonal dominance is to be avoided.
Condition (22) is not valid for j=0 and that row is not diagonally dominant for the matrix
with kx=kz=0. However, this matrix should be singular on the same physical grounds as
Equation (11) should be in the case of k( =0. Therefore, if the compatibility condition is
fulfilled, row j=0 can be ignored for kx=kz=0 by setting a value for p̂0 (Hildebrand [13])
which leads to a non-singular matrix if condition (22) is met.

Condition (22) ensures that all the other rows in the other matrices with kx"0 or kz"0 are
diagonally dominant except for the row that corresponds to j=0. Requiring this row to be
diagonally dominant imposes an upper limit on the box length in the uniform directions in the
form of

2
Lxi

2 \b(a+b) (23)

where Lxi
is that length.

The analysis for the case in which two directions are mapped is given in Appendix A. It
results in a much wider band of non-zero coefficients in b and more restrictions on the
stretching imposed by the condition of diagonal dominance. A similar analysis can be carried
out for the case where all three directions are mapped. This should result in an even wider
band of non-zero coefficients in b and more restrictions imposed by the diagonal dominance
condition. The rare need for such a case kept us away from that analysis and instead it was
preferred to concentrate on the non-periodic case, which is discussed in the next section.

In practice, it is sometimes difficult to comply with all the restrictions that are imposed by
the diagonal dominance on the stretching. Violating these restrictions does not necessarily
mean that b becomes singular. However, it means that iterative methods for solving the
Poisson equation may converge more slowly, if at all. It can also increase the risk of b being
ill posed, i.e. its determinant may become dangerously close to zero. This can even cause
problems to direct solution schemes owing to an increase in the sensitivity to round-off errors.
The experience gained in using the iterative bi-conjugate gradient method [14], when one or
two directions are stretched, shows that the solution converges rapidly in a few iterations if all
the restrictions of the diagonal dominance are met. However, as the ratio of a/b is decreased
and more rows lose their diagonal dominance, the convergence rate slows down, especially
when a becomes smaller than b, until finally for a�b, the convergence rate becomes too slow
to be practical.

4. A STRETCHING FUNCTION FOR THE SECOND-ORDER CENTRAL FINITE
DIFFERENCE SCHEME

The periodicity assumption in Section 3 saved the need to consider a boundary condition for
the Poisson equation. This is not usually the case for a non-periodic direction. The numerical
boundary condition (b.c.) can be derived from Equation (6) as
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9pG
r,s · N( = −

(6̄Gr,s− 6̃̄G
r,s) · N(

arsDt
(24)

where N( is a unit vector normal to the boundary G (Peyret and Taylor [4]). The problem in
Equation (24) is that only 6̄Gr,s is known from the physical boundary conditions. However, it
can be shown that the value of 6̃̄Gr,s does not affect the calculations for the second-order central
finite difference scheme implemented on a staggered uniform grid as in Figure 1. This applies
as long as the marching from 6̄ r−1,s to 6̃̄ r,s is explicit, and in that case, 6̃̄Gr,s is usually taken as
6̄G

r,s. As outlined in Section 1, the goal is to develop a mapping that (i) keeps this property for
the b.c. and (ii) the consistent behaviour of an exactly divergence-free velocity field while
directly discretizing the Laplacian operator of the pressure equation. The first property is
considered in Appendix B. The more elaborate analysis of the second property is discussed
next.

To have the velocity exactly divergence-free after the pressure correction, the finite difference
scheme has to satisfy the identity

d( 2p
d( x2

)
i+1/2

=
d(

d( x
�d( p

d( x
�)

i+1/2

(25)

where d( /d( x is the differentiation by the finite difference scheme. For a non-uniform grid one
can use the chain role to express the left-hand side of Equation (25) as

d( 2p
d( x2

)
i+1/2

=
1

X %1+1/2
2

�d( 2p
d( s2

)
i+1/2

−
X¦i+1/2

X %i+1/2

d( p
d( s

)
i+1/2

�
(26)

X(s) is the mapping from the equally spaced staggered co-ordinate s to the non-equally spaced
co-ordinate x, X % stands for dx/ds and X¦ for d2x/ds2. Then by using the second-order central
finite difference scheme for the differentiation in the s-direction, one gets from Equation (26)

Figure 1. Schematic description of a rectangular grid that is staggered in the streamwise direction. The
squares denote where the streamwise velocity is defined and the triangles denote where the pressure is
defined. The transverse velocity is defined at the pressure points inside the domain, but its boundary

condition is defined at G (Peyret and Taylor [4]).
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d( 2p
d( x2

)
i+1/2

=
1

X %i+1/2
2

�pi+3/2−2pi+1/2+pi−1/2

h2 −
X¦i+1/2

X %i+1/2

pi+3/2−pi−1/2

2h
�

(27)

where h is the uniform grid spacing. A similar derivation for the right-hand side of (25) leads
to

d(
d( x

�d( p
d( x

� )
i+1/2

=
1

X %i+1/2h2

�pi+3/2−pi+1/2

X %i+1

−
pi+1/2−pi−1/2

X %i

�
(28)

A rearrangement of the right-hand side of (28) leads to

d(
d( x

�d( p
d( x

� )
i+1/2

=
1

X %i+1/2
2

�pi+3/2−2pi+1/2+pi−1/2

h2 −
X¦i+1/2

X %i+1/2

pi+3/2−pi−1/2

2h
�

+Api+3/2− (A+B)pi+1/2+Bpi−1/2 (29)

where

A=
1

X %i+1/2h2

� 1
X %i+1

−
1

X %i+1/2

+
hX¦i+1/2

2X %i+1/2
2

�
(30.1)

B=
1

X %i+1/2h
2

� 1
X %i

−
1

X %i+1/2

−
hX¦i+1/2

2X %i+1/2
2

�
(30.2)

In order for Equation (25) to hold, Equation (29) must be identical to Equation (27). This
yields two differential finite difference equations in the form of

A=0, B=0 (31)

These two equations can be initially solved by assuming that the grid is fine enough to allow
a slow variation of X(s). Then, one can expand X %i+1 around X %i+1/2 as

X %i+1=X %i+1/2+
h
2

X¦i+1/2+
h2

8
X§i+1/2+ · · · (32)

and similarly for X %i. These expansions can be substituted into Equations (30) and by keeping
only the non-zero leading order of h, one just gets one differential equation

(X¦)2−X %X§/2=0 (33)

where the index i was omitted because Equation (31) should hold for any i. Equation (33) is
in a non-linear form that lacks an explicit dependence on s and hence, according to Hildebrand
[15], the solution can be derived as
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X %=
c0

1+c1s
, i.e. X(s)=

c0

c1

log(1+c1s) (34)

The derivation of (33) from (31) was based on the assumption of a weak variation of X(s)
along s. However, substituting (34) into (30) shows that it fulfils (31) e6en in the finite difference
form. Satisfying the identity d( 2p/d( x2=d( (d( p/d( x)/d( x also means that (34) allows a free choice
of the boundary value 6̃̄Gr,s. A rigorous proof for this is given in Appendix B. Therefore,
mapping (34) has met the goals set for it and is unique in doing so because it is the only
solution of (33). This should not be a surprise, since d( (d( p/d( x)/d( x differentiates numerically
1/X % along with d( p/d( x. Thus, if the numerical differentiation is to be kept exact for a
second-order polynomial of s, 1/X % has to be at the most a linear function of s. On the other
hand, consider the simple alternative

X %=c0+c1s (35)

which by (28) leads to

d(
d( x

�d( p
d( x

�)
i+1/2

=
�d2p

dx2

)
i+1/2

+
h2

6X %i+1/2
2

�
2

d4p
ds4−

X¦
X %

d3p
ds3

�
i+1/2

+ · · ·
n

d( 2p

d( x 2
)
i+1/2

�
1+

X %i+1/2
2 h2

4X %i+1X %i

�
(36)

This shows an additional truncation error that does not exist in the case of Equation (34).
Contrary to the grid stretching of the periodic case, (34) does not lead to a loss of the diagonal
dominance in d( 2p/d( x2 as long as X % is positive and finite. This can be easily verified by
Equations (25) and (28). However, in this case, there are other good reasons to limit the
stretching. Suppose there is a coherent sinuous motion in the physical domain. Then, the
truncation error can be estimated by calculating the modified wave number on the stretched
grid [16], which is

k0 = − i e− ikx d(
d( x (eikx) (37)

This leads, using (34), to

k0 = −
i

2c0X" %h
[(1+X" %c1h)ikc0/c1− (1−X" %c1h)ikc0/c1] (38)

where X" %X %/X %(0) and 05s5smax. Keeping �X" %c1h �BO(1), which is guaranteed if X" %/NxB
O(1), leads to

k0 =k
�

1+
(ikc0−c1)(ikc0−2c1)X" %2h2

6
+O(h4)

n
(39)
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It shows a second-order accuracy, as sought for, but with an amplitude error as well as a phase
error owing to the mapping. Naturally, a uniform grid is more suitable when the flow is
dominated by a single coherent sinuous wave. Nevertheless, it emphasizes the need to limit the
stretching. Other reasons to do so include the grid-size oscillations, which for this type of finite
difference scheme are associated with poor resolution or boundary conditions that are too stiff
[17]. An aggressive stretching can worsen this phenomenon [18]. It can also considerably
reduce the time step for stability. Therefore, it is recommended to keep the ratio X" %/Nx smaller
than 1 as indicated by the modified wave number analysis and which was found satisfactory
in the following boundary layer problem.

5. APPLICATION TO TEST PROBLEMS

A three-dimensional code was written for a Cartesian grid using the time marching scheme
described in Section 2. One direction was staggered for the use of the second-order central
finite difference scheme of Section 4 and the other two directions were taken as periodic to
allow the use of the Fourier method. The Poisson equation for the pressure was solved in the
Fourier space using a tri-diagonal solver if no stretching was used or when only the
non-periodic direction was stretched. In the case when one of the periodic directions was also
stretched an iterative bi-conjugate gradient method was used. The time step was taken at least
as half of the upper limit given by a numerical instability analysis based on assuming periodic
boundary conditions in all directions and a uniform grid with the physical domain smallest
spacing [9]. The same time step was used when results of different grids were compared. This
is to ensure the differences in the results are due to the spatial accuracy and not the temporal
accuracy. The code was validated by comparing its results to analytical solutions of Stokes
flows and Taylor–Green’s decaying vortices [5].

Two test problems are discussed in this section. The first is periodic co-flowing jets, which
demonstrate the mapping for the Fourier method. The second problem is a time developing
boundary layer over a flat plate, which is to demonstrate the stretching function for the central
finite difference scheme. In both problems the convergence of the results was checked by
refining the mesh whether it was uniform or stretched.

The test problems are two-dimensional to allow generating results for various grids in a
reasonable computational effort. Three-dimensional results will be discussed in the future.
These will include the simulations of transitional jets and boundary layers with an emphasis on
calculating the basic sound sources, which requires an exactly divergence-free velocity field
[19]. The spanwise direction will be treated using an FFT.

5.1. Periodic co-flowing jets

Periodic co-flowing jets have been the subject of research due to their importance for
multiple-jet burners and nozzles [20]. They exhibit the behaviour of isolated jets when the ratio
of the distance between the jets and their diameter is large and the behaviour of flow through
a grid when the ratio is close to one. The phenomenon can be simulated by simulating a jet
subject to transverse periodic boundary conditions. The grid stretching for the Fourier method
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should be useful when interest is in the early stages of the jet development. This is done by
concentrating more points in the jet shear layer or by providing a convenient control tool for
adjusting the transverse length of the computational box.

A typical mean streamwise velocity for an isolated laminar jet is given by Michalke [21]

U(y)=0.5{1+ tanh[b2(Y/y−y/Y)]}, b2=0.25Y/d2 (40)

where the centreline velocity is normalized to one. Y is the jet half-width, which is defined as
the point where the velocity is half of its centreline value and d2 is the momentum thickness.

Figure 2. The global L2-error convergence by the Fourier method for (a) the first derivative and (b) the
second derivative of the laminar jet profile (40) and for various grids stretched by (12). The computa-

tional box width Ly is five times the jet width 2Y and Y/d2=10.
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Figure 2 shows the global L2-error convergence for the first and second derivatives of U(y),
which are calculated by the Fourier method for a uniform and stretched grids. This is to
estimate the effect on the convection and diffusion terms. Y/d2 was taken as 10 and the
velocity profile was confined in the interval

−Ly/25y5Ly/2, Ly/(2Y)=5 (41)

An exponential convergence typical for a spectral method dominates in the figure until the
non-periodicity in the derivatives of U(y) and machine round-off errors come into effect. It is
also seen that moderate stretching results in better performance than aggressive stretching.
This is because the highest resolution is needed around y=Y. Thus, the choice of stretching
is not just limited by the desire to keep the diagonal dominance in the discretized Poisson
equation but also by the physical nature of the problem.

The simulation of a jet starting with the mean velocity of (40) and confined in the interval
of (41) was carried out using the inflow boundary conditions

6x(x=0, y)=U(y)[1+o sin(2pft)], 6y=0 (42)

where o=0.02 is the disturbance amplitude. The disturbance frequency f was set according to
St2Y 0

2Y0f/U=0.3, where Y0=Y(x=0). This is in the range of the jet preferred mode that
yields a strong amplification of the disturbance [22]. A soft outflow boundary condition of the
form

(f
(t

+Uc

(f
(x

=0 (43)

was prescribed for the velocity field, where Uc was taken as half of the instantaneous centreline
velocity at the outflow [19]. The flow started at t=0 from a parallel state, i.e. 6x=U(y),
6y=0, and was allowed to evolve to a periodic state. The boundary and initial conditions for
the passive scalar were taken to be the same as the streamwise velocity, but without the
starting disturbance.

Figure 3 shows contour plots of instantaneous vorticity for various grid resolutions and for
a computational box with an axial length of Lx=20Y0. It is seen that a moderate stretching
of b/a=1 has a similar effect on the vorticity distribution as increasing the transverse
resolution from 32 points to 48. However, while the latter caused an increase of more than 50
per cent in the computation time, the stretching caused only a slight increase in the
computation time due to the convergence of the pressure solution in a few iterations.
Increasing the ratio of b/a to 2 further improved the accuracy of the results in terms of the
velocity and passive scalar distributions. However, when b/a was increased to 4 or higher, the
trend was opposite and the accuracy deteriorated so much that the simulation had to be
stopped. This was clearly caused by the spreading of the jet which led to a need for good
resolution further away from the centreline.

The effect of the transverse length of the computational box Ly on the jet development was
also investigated. The results are shown in Figure 4 for the streamwise variation of the mean
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Figure 3. Instantaneous vorticity magnitude contours for a jet subject to transverse periodic boundary
conditions and a symmetric inflow disturbance in the streamwise velocity. Re2Y 0

is 600 and Y0/d2=10.
The contour levels range from 0.25 to 4 with an increment of 0.75. The solid lines correspond to a
uniform grid with (321, 48) points. The dotted lines correspond to a grid with (321, 32) points, which is

(a) uniform and (b) stretched in the transverse direction by (12), where b/a=1.

width of the jet. It is seen that the periodicity in the transverse direction can have a strong
damping effect on the jet spreading when the computational box width Ly is too close to the
jet inflow width 2Y0. This phenomenon is usually associated with a self-sustaining instability
mechanism dominating the jet development, instead of a convective one as for an isolated jet
[20]. Thus, trying to increase the resolution by decreasing Ly can have undesirable effects. The
mapping in Section 3 provides a way to avoid these effects without significantly increasing the
memory-allocation requirements.

5.2. The time de6eloping boundary layer

The previous problem was dominated by a spatial instability mechanism as long as the
transverse length of the computational box was large enough. Thus, this approach is
commonly referred to as a spatial simulation. A different approach is to cause deliberately a
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Figure 4. The streamwise variation of the mean width of the jet for various transverse lengths of the
computational box. The grid is uniform with (321, 32) points for Ly=5Y0 and similar resolutions for the

other cases of Ly. The rest of the conditions are the same as in Figure 3.

temporal instability mechanism by imposing periodic boundary conditions in the streamwise
direction. This approach is usually called a temporal simulation [23]. When it is applied to
weakly non-parallel shear flows such as a boundary layer over a flat plate, the hydrodynamic
results can be correlated to the results of the spatial simulation by properly replacing the time
role in the first approach with the role of the streamwise direction in the latter. The advantage
of the temporal approach is that it requires a much smaller box in the streamwise direction
than the spatial approach and thus less computational resources.

The time developing boundary layer is a good test case to examine mapping (34), because
it requires just the monotonic stretching in one direction that the mapping provides. The
simulation was carried out by specifying solid wall boundaries at x=0 and free slip wall
boundaries at x=Lx, i.e. (6y/(x=0, 6x=0, where x is the non-periodic transverse direction.
The flow started from a mean parallel state, i.e. 6y=6B of a Blasius profile and 6x=0. An
initial disturbance was added to the velocity, which corresponds to the most unstable mode of
the Orr–Somerfield equation. The disturbance streamwise–velocity amplitude was taken up to
20 per cent of the freestream velocity to accelerate the boundary layer development. The
streamwise length of the computational box was taken as the wavelength of the initial
disturbance and the transverse length was taken as 10d1, where d1 is the initial mean
displacement thickness. The conditions for the passive scalar are the same as for the
streamwise velocity but without the initial disturbance.

Figure 5 shows the development of the amplitude of the disturbance mode. It shows that at
t=0 a uniform grid of 100 point in the x-direction is sufficient to describe the disturbance
accurately. This is not so at t=3T, where T=17.2557d1/U, which is the time period of the
initial disturbance calculated by linear stability theory. A gap of about 10 per cent opens up
in the mode amplitude between the uniform grid of 100 points to that of 600 points. This is
clearly caused by the numerical errors due to the less resolved grid. These errors are
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Figure 5. The development of the initial disturbance amplitude of (a) 6y and (b) 6x in the time developing
boundary layer case. T is the time period of the initial disturbance calculated by linear stability theory
and Red 1

is 998. The non-uniform grid is stretched by (34) with a maximum factor of X" %max=50, i.e.
Dxmax/Dxmin$50, and having smax=xmax=10d1.

significantly reduced if mapping (34) is introduced with a maximum stretching factor of
X" %max=50, i.e. Dxmax/Dxmin is about 50 and where smax=xmax. The relatively coarse mesh also
affects the disturbance propagation velocity as seen in Figure 6. This causes a phase shift of
about 40° between the relatively coarse uniform mesh and the fine mesh at t=3T.

Figure 7 shows the effects of mappings (34) and (35) on the wall shear d6y/dx(x=0), which
is calculated by the one-sided second order formula
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Figure 6. Instantaneous passive scalar contours of the time developing boundary layer of Figure 5 and
for t=3T. The contour levels range from 0.1 to 0.9 with an increment of 0.1. The solid lines correspond
to a uniform grid with a transverse resolution of 600 points. The dotted lines correspond to a transverse
resolution of 100 points, which are (a) equally spaced and (b) are stretched as in Figure 5. The

simulations used 32 points in the axial direction.

d6y
dx

)
x=0

=
−6y(s=1.5h)+96y(s=0.5h)

3X %(0)h
(44)

where 6y(s=0) is zero due to the wall. To make the comparison between the two mappings as
fair as possible, the same X %(0) and h were taken in both mappings. This ensures that only the
differences in 6y between the two mappings cause the difference in the wall shear. It also results
in about the same Dxmin, which makes the stability limit for the time step the same and thus
results in the same execution time. Figure 7 shows a considereable difference in the wall shear
between the fine grid and the coarser uniform grid, i.e. X %(0)=1. This is mostly due to the
phase error seen in Figure 6(a). The difference in the wall shear between the fine grid and the
coarse grid initially decreases at the same rate for both mappings. However, as the stretching
increases the wall shear produced by (34) continues to converge to the fine grid result at almost
an exponential rate while the result by (35) shows a reduced rate of convergence.
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Figure 7. The grid stretching effect on the wall shear of the mode of Figure 5. d6y/dx is produced by a
stretched grid of 100 points in the transverse direction and d6y,e/dx by a uniform grid of 600 points. Both

kinds of stretching functions take smax=xmax.

It is difficult to say what is the main cause of the behaviour seen in Figure 7. It can be the
better maximum stretching factor X" %max, i.e. X %max/X %(0), which is provided by (34). It can also
be the higher truncation error in the pressure equation due to (35), which increases as the
stretching increases as seen in (36). A similar test for a Stokes problem, where there was no
need to solve a pressure equation, showed smaller differences between the two mappings and
almost no change in the convergence rate when (35) was used, until that convergence hit its
minimum. This leads us to believe that the higher truncation error in the pressure equation due
to (35) had something to do with the reduced convergence rate seen in Figure 7. Of course one
can try and fit a stretching function to the current problem that may behave even better than
(34). However, that function probably will not behave that well when the conditions are
changed. The fact that (34) does not introduce an additional truncation error in the pressure
equation as other functions do, promises a general good performance as long as there is a
physical reason for a monotonic stretching. This was supported by further numerical experi-
mentation that included varying the disturbance amplitude and comparing with linear stability
theory results when the amplitude was small enough, say less than 1 per cent.

6. SUMMARY

Two Cartesian grid stretching functions were developed for solving the unsteady incompress-
ible N–S equations using the projection method. The first function is intended for use with the
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Fourier method and is a generalization of an earlier version that mapped the periodic
boundaries to infinity. The present mapping concentrates more points at the box centre while
allowing the box size to remain finite in the physical domain. The mapping keeps the spectral
behaviour of the scheme as long as the two highest modes are negligible. The analysis
concentrated on the effect of the mapping on the pressure solution while the effect on the
convective and diffusion terms was discussed for each of the test cases separately. The diagonal
dominance of the pressure equation matrix was shown to be spoiled by the mapping and limits
to the stretching were derived for mappings in one direction and two directions.

The second type of stretching was derived to allow a direct discretization of the Laplacian
operator in the pressure equation using the second-order central finite difference scheme, while
retaining the consistent behaviour of the uniform-grid scheme. This means no ad hoc
assumptions on the pressure boundary conditions and an exactly divergence-free velocity field
after the pressure correction. A unique function was found to fulfil these conditions. It permits
a monotonic stretching and does not spoil the diagonal dominance of the pressure equation,
as long as it does not stretch to infinity. However, a limit on the stretching was derived in
order to prevent strong distortion of a coherent sinuous wave.

The usefulness of the two mappings was illustrated by simulating periodic co-flowing jets
and a time developing boundary layer. It was shown that a careful implementation of the
stretching functions can achieve a considerable reduction in the required computational
resources. Hence, it is suggested that these functions be added to the arsenal of tools available
for simulating incompressible flow.

APPENDIX A. STRETCHING TWO PERIODIC DIRECTIONS

Applying mapping (12) in two directions, say y and z, results in a much wider band of
non-zero coefficients in b than is the case for a single mapped direction. Let us assume that y
is the first to be Fourier transformed so that p̂m can be arranged in a vector form for each kx,
where

m= j+ (l− l0)Ny/2, l0= − (Nz/2)+1 (A1.1)

−Nz/2+15 l5 (Nz/2)−1, 05 j5 (Ny/2)−1 (A1.2)

This results in having (Nx−1) equations of the set

bnm · p̂m= f. m, 05n, m5 [(Nz/2)−1](Ny/2)−1 (A.2)

to solve. The non-zero coefficients of b at row n are

bn,n−Ny
= −kl−2gl,−2, bn,n−Ny/2

=kl−1gl,−1 (A3.1)

bn,n−2= −kj−2gj,−2, bn,n−1=kj−1gj,−1 (A3.2)
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bn,n= −kx
2 −kjgj,0−klgl,0 (A3.3)

bn,n+2= −kj+2gj,2, bn,n+1=kj+1gj,1 (A3.4)

bn,n+Ny
= −kl+2gl,2, bn,n+Ny/2

=kl+1gl,1 (A3.5)

where the mapping parameters az and bz are to be used in (15) if g has the index l and ay and
by for the index j. As of a single mapped co-ordinate, any contribution from kj\2p [(Ny/2)−
1] or �kl �\2p [(Nz/2)−1] is to be set to zero and any contribution from kjB0 is to be included
using (18).

Starting the analysis with the matrix that corresponds to kx=0, it is found that (22)
guarantees that all the rows that do not have kj=0 or kl=0 in their diagonal, are diagonally
dominant when (22) is imposed on j and l. The row of kl=kj=0 in its diagonal has to be
subtracted out as in the case of a single mapped co-ordinate. This leaves only the rows that
have kj=0 or kl=0 in their diagonal vulnerable to a loss of diagonal dominance. Condition
(22) shows that as j or l decreases, the diagonal dominance weakens. Hence, imposing diagonal
dominance on the rows that have j=0, l=1 in their diagonal or vice versa, guarantees the
dominance for all the rest of the rows that possess j or l in their diagonal. This leads, using
(A3), to

a z
2\azbz/2+3b z

2/4+ayby/2+by
2/2 (A4)

for j=0, l=1 and vice versa in the indexes y, z for j=1, l=0. If ay=az and by=bz then (A4)
leads to a/b\1.725 instead of the a/b\1.151 yielded by (22) for the single mapped
co-ordinate case.

Complying with all the restrictions outlined for the matrix with kx=0 also ensures that all
the rows of the other matrices are diagonally dominant, except for the rows that have j= l=0
in their diagonal. In that case, one has to impose

2
Lx

2\by(ay+by)+bz(az+bz) (A5)

which is more restrictive when compared with condition (23) of the single mapped co-ordinate
case.

APPENDIX B. AVOIDING AD HOC ASSUMPTIONS ON THE PRESSURE
BOUNDARY CONDITIONS

The goal is to derive the governing equation for the grid stretching that keeps the free choice
of the boundary condition 6̃̄Gr,s for the second-order central finite difference scheme of Section
4. Assuming an explicit time marching from 6̄ r−1,s to the intermediate velocity field 6̃̄ r,s, the
boundary value 6̃̄Gr,s can affect only through the pressure solution of the Poisson equation (9)
(Peyret and Taylor [4]). Hence, the effect of 6̃̄Gr,s must be eliminated from that solution.
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A discretization of the Poisson equation (9) at the cell mid-point closest to the boundary G
yields, using (27) and Figure 1,

�
1+

hX¦1/2

2X %1/2

�
p−1/2− (2+h2X %1/2

2 9h
2)p1/2+

�
1−

hX¦1/2

2X %1/2

�
p3/2=

h2X %1/2
2

aDt
�ũ1− ũ0

X %1/2h
+9h · 6̃̄1/2

�
(B1)

where u is the velocity component in the stretched direction and 9h is the divergence operator
for the other directions. For simplicity, the indices r and s were omitted from (B1). A similar
discretization of the boundary condition (24) leads to

p1/2−p−1/2

X %0h
= −

u0− ũ0

aDt
(B2)

Equations (B1) and (B2) can be combined to a new equation that does not contain p−1/2.
The requirement that ũ0 does not affect the solution means that the coefficient of ũ0 has to be
cancelled out in that equation. This leads to

�
1+

hX¦1/2

2X %1/2

� X %0
X %1/2

=1 (B3)

which is identical to B=0 by (30.2). A similar analysis for the right-hand side boundary leads
to the requirement A=0 of (31). Thus, mapping (34) found in Section 4 also allows a free
choice of the boundary condition 6̃̄Gr,s as in the uniform staggered grid.
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